Place your order today at a 20% discount

Question 1:
a. Which is generally stronger, intermolecular or intramolecular forces? Intramolecular forces include covalent bonds, ionic bonding, and metallic bonding.
b. Which of these kinds of interactions are broken when a liquid is converted to a gas?
Question 2:
Which type of intermolecular forces accounts for each of these differences:
a. CH3OH boils at 65 °C and CH3SH boils at 6 °C.
b. Xe is a liquid at atmospheric pressure and 120 K and Ar is a gas under the same conditions.
c. Acetone boils at 56 °C and 2-methylpropane boils at -12 °C. (Lewis structures below)
Question 3:
Select which molecule will have the stronger intermolecular dispersion forces?
a. Br2 or O2
c. SiH4 vs GeH4
Question 4:
Using your knowledge of intermolecular forces, rationalize the difference in boiling points for each pair:
a. HF (20 °C) vs HCl (-85 °C)
b. CHCl3 (61 °C) and CHBr3 (150 °C)
c. Br2 (59 °C) and ICl (97 °C)
Question 5:
Based on the type or types of intermolecular forces, predict the substances in each pair that has the higher boiling point:
a. Propane (C3H8) or n-butane (C4H10)
b. Diethyl ether (CH3CH2OCH2CH3) or 1-butanol (CH3CH2CH2CH2OH)
c. Sulfur dioxide (SO2) or sulfur trioxide (SO3)
Question 6:
Carbon tetrachloride CCl4 and chloroform CHCl3, are common organic liquid. Carbon tetrachloride’s normal boiling point is 77 °C; chloroforms normal boiling point is 61 °C. Which statement is the best explanation of this data?
a. Chloroform can hydrogen bond, but carbon tetrachloride cannot.
b. Carbon tetrachloride has a larger dipole moment than chloroform.
c. Carbon tetrachloride’s large size and mass results in a more polarizable molecule and results in stronger dispersion forces.
Question 7:
Based on their composition and structure list, CH2Cl2, CH3CH2CH3, and CH3CH2OH in order of:
a. Increasing intermolecular forces
b. Increasing viscosity
c. Increasing surface tension
Question 8:
The fluorocarbon compound C2Cl3F3 has a normal boiling point 47.6 °C. The specific heats of and C2Cl3F3
(l) C2Cl3F3 (g) are 0.91 J/g·K and 0.67 J/g·K, respectively. The heat of vaporization for the compound is 27.49 kJ/mol. Calculate the heat required to convert 35.0 g of C2Cl3F3 from a liquid at 10.00 °C to a gas at 105.00 °C.
Did you know that effective analysis of concepts requires professionalism in handling academic research Papers? Do no compromise on your grade choose professional Research writers at tenacitypapers.comThe assignment Which is Generally Stronger, Intermolecular or Intramolecular Forces Has been handled previously by writers From Elitetutorslab.

Don't use plagiarized sources. Get Your Custom Essay on
Which is Generally Stronger, Intermolecular or Intramolecular Forces
From Just $13/Page
Order Essay

About ASAP Essays

We are a professional paper writing website. If you have searched a question and bumped into our website just know you are in the right place to get help in your coursework. We offer HIGH QUALITY & PLAGIARISM FREE Papers.

How It Works

To make an Order you only need to click on “Order Now” and we will direct you to our Order Page. Fill Our Order Form with all your assignment instructions. Select your deadline and pay for your paper. You will get it few hours before your set deadline.

Are there Discounts?

All new clients are eligible for 20% off in their first Order. Our payment method is safe and secure.

Hire a tutor today CLICK HERE to make your first order

Order your Assignment today and save 15% with the discount code ESSAYHELP